MATH1010 Assignment 2

Suggested Solution

1. (a)

$$f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$$
$$= \lim_{x \to c} \frac{\frac{x^2}{x+1} - \frac{c^2}{c+1}}{x - c}$$
$$= \lim_{x \to c} \frac{xc + x + c}{(x+1)(c+1)}$$
$$= \frac{c(c+2)}{(c+1)^2}$$

(b)

$$g'(c) = \lim_{x \to c} \frac{g(x) - g(c)}{x - c}$$

=
$$\lim_{x \to c} \frac{x^{\frac{2}{3}} - c^{\frac{2}{3}}}{x - c}$$

=
$$\lim_{x \to c} \frac{(x^{\frac{1}{3}} - c^{\frac{1}{3}})(x^{\frac{1}{3}} + c^{\frac{1}{3}})}{(x^{\frac{1}{3}} - c^{\frac{1}{3}})(x^{\frac{2}{3}} + x^{\frac{1}{3}}c^{\frac{1}{3}} + c^{\frac{2}{3}})}$$

=
$$\frac{2}{3}c^{-\frac{1}{3}}$$

2. (a) Since $e^x, \sqrt{x}, |x|$ are continuous on $[0, +\infty)$

$$\lim_{x \to 0} e^{\sqrt{|\sin x|}} = e^{x \to 0} \frac{|\sin x|}{|\sin x|}$$
$$= e^{\sqrt{|\sin |\sin x|}}$$
$$= e^{\sqrt{||\sin |\sin x||}}$$
$$= 1$$

(b) Since $\ln(x)$, |x| is continuous $\operatorname{on}(0, +\infty)$

$$\lim_{x \to \pi} \ln(1 + |\cos x|) = \ln \lim_{x \to \pi} (1 + |\cos x|)$$
$$= \ln(1 + |\lim_{x \to \pi} \cos x|)$$
$$= \ln 2$$

3.
$$f'(x) = -\sin x + x$$

By Mean Value Theorem, for $x \ge 0$, we have

$$\sin x - \sin 0 = \sin'(c)(x - 0) \quad \text{for some} \quad c \in (0, x)$$

Hence $\sin x \leqslant x$ for $x \ge 0$

Thus $f'(x) = -\sin x + x \ge 0$ for $x \ge 0$ and f(x) is an increasing function on $[0, +\infty)$

4. If
$$f(2) = 2, f'(2) = 3, g(2) = 4, g'(2) = 5,$$

(a)

$$\frac{d}{dx} \left(f(x)g(x) \right) \Big|_{x=2} = f(2)g'(2) + f'(2)g(2)$$
$$= 22$$

(b)

$$\frac{d}{dx} \left(\frac{f(x)}{g(x)} \right) \Big|_{x=2} = \frac{g(2)f'(2) - f(2)g'(2)}{\left(g(2)\right)^2} = \frac{1}{8}$$

$$\frac{d}{dx}\left(g(f(x))\right)\Big|_{x=2} = g'(f(2)) \cdot f'(2)$$
$$= 15$$

5. (a) Since f(x) is continuous function on \mathbb{R} $\lim_{x \to 1^+} f(x) = f(1) = \lim_{x \to 1^-} f(x)$ 1 + A = 1 and A = 0

(b)

$$f(x) = \begin{cases} x & \text{if } x \ge 1\\ x^2 - x + 1 & \text{if } x < 1 \end{cases}$$

f(x) is differentiable on x < 1 as $f(x) = x^2 - x + 1$ for x < 1f(x) is differentiable on x > 1 as f(x) = x for x > 1

$$\lim_{x \to 1^{-}} \frac{f(x) - f(1)}{x - 1} \qquad \qquad \lim_{x \to 1^{+}} \frac{f(x) - f(1)}{x - 1}$$
$$= \lim_{x \to 1^{-}} \frac{x^2 - x + 1 - 1}{x - 1} \qquad \qquad = \lim_{x \to 1^{+}} \frac{x - 1}{x - 1}$$
$$= 1 \qquad \qquad = 1$$

6. (a) f(x) is continuous for x > 0 and x < 0

$$\lim_{x \to 0^{-}} f(x) = 0$$
$$\lim_{x \to 0^{+}} f(x) = \lim_{y \to +\infty} e^{-y}$$
$$= 0$$

f(x) is continuous at x = 0 and hence is continuous on \mathbb{R}

(c)

(b) i.

$$\lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^+} \frac{e^{-\frac{1}{x^2}}}{x}$$
$$= \lim_{y \to +\infty} \sqrt{y} e^{-y}$$
$$= 0$$
$$\lim_{x \to 0^-} \frac{f(x) - f(0)}{x - 0} = 0$$

Therefore, f(x) is differentiable at 0

$$f'(x) = \begin{cases} \frac{2e^{-\frac{1}{x^2}}}{x^3} & x > 0\\ 0 & x \le 0 \end{cases}$$

(c)

ii.

$$\lim_{x \to 0^{-}} \frac{f'(x) - f'(0)}{x - 0} \qquad \lim_{x \to 0^{+}} \frac{f'(x) - f'(0)}{x - 0} \\= 0 \qquad \qquad = \lim_{y \to +\infty} \frac{2e^{-y}}{\frac{1}{y}} \\= 0$$

f'(x) is differentiable at 0.

7. (a) Suppose n = 0,

$$f(x) = \begin{cases} \cos^2 \frac{1}{x} & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$$

We claim $\lim_{x\to 0} f(x) \neq 0$: Let $\varepsilon = \frac{1}{2}$, for any $\delta > 0$, there exist $k_0 \in \mathbb{N}$ such that

$$0 < \frac{1}{2k_0\pi} < \delta$$
 and $f(\frac{1}{2k_0\pi}) = 1 > \frac{1}{2}$

f(x) is not continuous at x = 0

(b) i. Suppose n = 1,

$$f(x) = \begin{cases} x \cos^2 \frac{1}{x} & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$$
$$-1 \leqslant \cos^2 \frac{1}{x} \leqslant 1$$
$$-|x| \leqslant x \cos^2 \frac{1}{x} \leqslant |x| \quad \text{for } x \neq 0$$
By Sandwich Theorem,
$$\lim_{x \to 0} x \cos^2 \frac{1}{x} = 0$$

ii.

$$\lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^+} \frac{x \cos^2 \frac{1}{x}}{x}$$
$$= \lim_{x \to 0^+} \cos^2 \frac{1}{x} \qquad \text{does no exist}$$

f(x) is not differentiable on \mathbb{R}

iii.
$$f'(x) = \cos^2 \frac{1}{x} + \frac{1}{x} \sin \frac{2}{x}$$
 for $x \neq 0$

iv. Since f'(0) is not defined, f' is not continuous on \mathbb{R}

(c) Suppose n = 2,

i. Since $\lim_{x \to 0} x^2 \cos^2 \frac{1}{x} = 0$, f is continuous at x = 0ii. Since $\lim_{x \to 0} \frac{x^2 \cos^{\frac{1}{x}}}{x} = 0$, f is differentiable on \mathbb{R} iii. $\int 2x \cos^2 \frac{1}{x} + 2 \cos \frac{1}{x} \sin \frac{1}{x} \quad x \neq 0$

$$f'(x) = \begin{cases} 2x \cos^2 \frac{1}{x} + 2 \cos \frac{1}{x} \sin \frac{1}{x} & x \neq 0\\ 0 & x = 0 \end{cases}$$

iv. $\lim_{x\to 0} 2x \cos^2 \frac{1}{x} + 2 \cos \frac{1}{x} \sin \frac{1}{x}$ doex not exist So f' is not continuous on \mathbb{R}

8. (a) True

Assume f(x) + g(x) is continuous at x = cSince f(x) is continuous at x = cThen g(x) = (f(x) + g(x)) - f(x) is continuous at x = c(Contradiction arise) Therefore, f(x) + g(x) is not continuous at x = c.

(b) False

Consider
$$f(x) = \begin{cases} 1 & x \ge 0 \\ -1 & x < 0 \end{cases}$$
, $g(x) = \begin{cases} -1 & x \ge 0 \\ 1 & x < 0 \end{cases}$
Then $f(x) + g(x) = 0$ for $x \in \mathbb{R}$ (which is continuous)

(c) False

Consider
$$f(x) = |x|$$
 and $g(x) = \begin{cases} 1 & \text{if } x > 0 \\ -1 & \text{if } x \le 0 \end{cases}$
Then $f(x)$ is continuous at $x = 0$, $g(x)$ is not continuous.

Then f(x) is continuous at x = 0, g(x) is not continuous at x = 0, but f(x)g(x) = x is continuous at x = 0

(d) False

Let
$$f(x) = 0$$
 for all $x \in \mathbb{R}$
 $g(x) = \begin{cases} 1 & x = 0 \\ 0 & x \neq 0 \end{cases}$
 $g \text{ is not continuous at } x = f(1)$
 $f \text{ is continuous at } x = 1$
But $g \circ f$ is continuous at $x = 1$

9. (a) Let $f(x) = \sqrt{|x|}$ is continuous functions on \mathbb{R} By the Theorem, $f(g(x)) = \sqrt{|g(x)|}$ is also a continuous function on \mathbb{R} (b) Let $f(x) = \begin{cases} x & \text{if } x \ge 0 \\ 0 & \text{if } x < 0 \end{cases}$ is a continuous function on \mathbb{R} By the Theorem, h(x) = f(g(x)) is a continuous function on \mathbb{R}